ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert J. Schott, Charles L. Weaver, Mark A. Prelas, Kyuhak Oh, Jason B. Rothenberger, R. V. Tompson, Denis A. Wisniewski
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 349-353
Technical Paper | Radioisotopes | doi.org/10.13182/NT13-A15789
Articles are hosted by Taylor and Francis Online.
The use of a photon intermediate direct energy conversion (PIDEC) process to develop a proof of concept of a long-lived and efficient nuclear battery powered by a radioactive beta source is discussed. Fundamentally, PIDEC is a means of matching the scale length of the range of radiation to the scale length of the transducer. The device uses a photovoltaic cell and excimer gas-based photon source. In this work, argon was used to produce the excimer photon source (argon excimer at 129 nm) with a pressure range from 7 × 10-3 to 1.4 × 107 Pa (10-6 to 2100 psig). The beta source used in this study was a 90Sr source that has a daughter, 90Y, that then decays to stable 90Zr. Intermediate shielding from lead and an argon gas plenum were used to prevent damage to the photovoltaic cell. This battery demonstrated power variations with gas pressure as expected, and no radiation damage to the photovoltaic cell was observed over a period in excess of 150 h. Such a long exposure period demonstrates the desired tolerance of the device to the direct radiation damage that would otherwise be sustained in normal semiconductor-based energy conversion systems.