ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Drew E. Kornreich
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 282-302
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-A15784
Articles are hosted by Taylor and Francis Online.
This work involved estimating the homogeneous metal-water mixture critical mass curves of 34 fissionable nuclides from thorium to einsteinium. Calculations were performed using the discrete ordinates code PARTISN with ENDF/B-VII.0 69-group cross sections. Sample MCNP5 test cases indicate reasonable agreement between the two transport codes. In general, the results confirmed that there are three "forms" of the critical mass curves: (a) the traditional curve most well known as characterizing the "big 3" nuclides (233U, 235U, 239Pu), where the minimum critical mass is found in a dilute solution; (b) a simple monotonic curve characterized by a monotonically increasing critical mass as water is added to the metal, where the minimum critical mass is a metal system; and (c) a hybrid curve where the shape is similar to the traditional curve but the minimum critical mass is the pure metal. In general, the traditional and monotonic curves follow the "odd-even" rule of thumb that a nuclide with an even Z and an odd A or vice versa will have a traditionally shaped curve and that the other nuclides will have a monotonically shaped curve. The violations of this rule of thumb, i.e., the hybrid curves, in the set of nuclides analyzed are comprised of 232U and 252Cf. Plutonium-236 is especially interesting because it is a traditionally shaped curve with the minimum critical mass in a relatively dilute solution, but it violates the "odd-even" rule of thumb.