ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jae-Woo Ju, Sang-Moon Lee, Kwang-Yong Kim
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 274-281
Technical Paper | Fission Reactors/Thermal Hydraulics | doi.org/10.13182/NT13-A15783
Articles are hosted by Taylor and Francis Online.
The outlet plenum of a pebble bed modular-type gas-cooled nuclear reactor was optimized using three-dimensional Reynolds-averaged Navier-Stokes analysis and optimization techniques. A shear stress transport turbulence model was used as a turbulence closure. Two design variables for the optimization were selected: dimensionless displacement on the horizontal line and the angle of rotation about the center of gravity of the roof support block. The objective function was defined as a pressure drop between the inlet and the outlet of the outlet plenum. Latin hypercube sampling was used for selecting experimental design points within the design space. The objective function value was obtained at each design point through numerical analysis. The results show that the optimal design significantly improved the performance of the outlet plenum with respect to pressure drop. Through optimization, the pressure drop decreased by 11.8% compared to the pressure drop under the reference geometry.