ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Shane Park, Hyun Sun Park, Gyoodong Jeun, Bum Jin Cho
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 227-239
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15770
Articles are hosted by Taylor and Francis Online.
Particle mixing and sedimentation, related to corium debris bed formation and coolability in severe accidents, is investigated using a new computational fluid dynamics tool: the Analysis of Debris Dynamics and Agglomeration (ADDA) code. ADDA was developed based on an enhanced numerical method combining the moving particle semi-implicit algorithm with a rigid body dynamic model. The analysis successively simulates the entire process of debris bed formation, including corium jet breakup, mixing, and sedimentation. The methodology allows identification of key characteristics in the formation of the corium debris bed. Two-dimensional (2-D) and three-dimensional (3-D) simulations were utilized to model the detailed flow structures and mixing phenomena, along with the final sedimentation process, and were compared to the Q21 QUEOS test performed at Forschungszentrum Karlsruhe, Germany. For the analysis of debris bed formation, it is recommended that full 3-D simulations be utilized to provide enhanced accuracy related to corium debris field prediction. The 2-D simulations were found to be insufficient because of the debris field dependence on particle agglomeration and mixing, prior to debris settling.