ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
M. Rashid, S. Rahman, R. Kulenovic, M. Bürger, E. Laurien
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 208-215
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15768
Articles are hosted by Taylor and Francis Online.
In the case of a severe accident, continuous unavailability of cooling water to the core will result in overheating and subsequent meltdown of the fuel elements that would eventually result in the loss of fuel integrity. Under such conditions a porous structure, which is made of heat-generating particles of different sizes and shapes, may be formed. The presence of decay heat in such a debris bed poses a critical threat to the reactor pressure vessel (RPV). To avoid any damage to the RPV, the removal of decay heat from the debris bed is of great importance. The debris bed needs to be quenched by water either flooding from the top or flooding from the bottom until continuous cooling is established. To investigate the quenching behavior of the debris bed by means of experiments, the nonnuclear test facility "DEBRIS" has been established at Institut für Kernenergetik und Energiesysteme (IKE). Experimental investigations of quenching behavior for a preheated debris bed, at various initial bed temperatures, are carried out at IKE. In the new quenching tests, the cooling-down behavior of a superheated polydispersed particle bed from stainless steel spheres at different thermohydraulic conditions has been investigated. Numerical investigation with IKE's MEWA-2D code has also been carried out for the quenching experiments in order to promote better understanding of the experimental results as well as to verify the code's applicability to the quenching process.