ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Kwang Soon Ha, Fan-Bill Cheung, Jinho Song, Rae Joon Park, Sang Baik Kim
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 196-207
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15767
Articles are hosted by Taylor and Francis Online.
Boiling-induced natural-circulation flow in various engineered cooling channels is modeled and solved by considering the conservation of mass, momentum, and energy in the two-phase mixture, along with the two-phase friction drop and void fraction. The model is applied to estimate the induced mass flow rates through a uniform annular gap and a nonuniform annular gap between the reactor vessel and insulation under the in-vessel corium retention-external reactor vessel cooling conditions, and in the engineered corium cooling system of an ex-vessel core catcher during a severe accident. Dependence of the induced flow rate on various system parameters including the channel gap size, inlet diameter, inlet subcooling, and wall heat flux has been identified numerically. Results of the present study provide useful information for enhancing the design of engineered cooling channels to assure long-term cooling and retention of corium under severe accident conditions.