ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Haihua Zhao, Vincent A. Mousseau
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 184-195
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15766
Articles are hosted by Taylor and Francis Online.
This paper presents extended forward sensitivity analysis as a method to improve uncertainty quantification. By including the time step and potentially grid spacing as special sensitivity parameters, the forward sensitivity method is extended as one method to quantify numerical errors. Note that by integrating local truncation errors over the whole system through the forward sensitivity analysis process, the generated time step sensitivity information reflects global numerical errors. Discretization errors can be systematically compared against uncertainties due to other physical parameters. This extension makes the forward sensitivity method a much more powerful tool than other tools of its type to help uncertainty quantification. When the relative sensitivity of the time step to other physical parameters is known, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace traditional time step convergence studies that are a key part of code verification, with much less computational cost. Two well-defined benchmark problems with manufactured solutions are utilized to demonstrate the method.