ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Azin Behdadi, John C. Luxat
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 157-169
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Reactor Safety; Thermal Hydraulics | doi.org/10.13182/NT13-A15764
Articles are hosted by Taylor and Francis Online.
Heavy water moderator surrounding each fuel channel is one of the important safety features in CANDU reactors since it provides an in situ passive heat sink for the fuel in situations where other engineered means of heat removal from fuel channels have failed. In a critical-break loss-of-coolant-accident scenario, fuel cooling becomes severely degraded because of rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes (PTs) experiencing significant heatup during early stages of the accident when coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the PT in contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to the CT and a large heat flux spike from the CT to the moderator fluid. For conditions where subcooling of the moderator fluid is low, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT postdryout temperature becomes sufficiently high to result in continued thermal creep strain deformation of both the PT and the CT. The focus of this work is to develop a mechanistic model to predict critical heat flux (CHF) on the CT surface following a contact with its PT. A COMSOL multiphysics model using a two-dimensional transient fluid-thermal analysis of the CT surface undergoing heatup is used to predict the flow and temperature profiles on the CT surface. A mechanistic CHF model is to be proposed based on a concept of wall dry patch formation, prevention of rewetting, and subsequent dry patch spreading.