ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Zeyun Wu, Qiong Zhang, Hany Abdel-Khalik
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 372-382
Technical Paper | Special Issue on the Initial Release of MCNP6 / Fission Reactors | doi.org/10.13182/NT12-A15350
Articles are hosted by Taylor and Francis Online.
A new variant of a hybrid Monte Carlo-deterministic approach for simulating particle transport problems is presented and compared to the SCALE FW-CADIS approach. The new approach, denoted as the SUBSPACE approach, improves the selection of the importance maps in order to reduce the computational overhead required to achieve global variance reduction - that is, the uniform reduction of variance everywhere in the phase-space. The intended applications are reactor analysis problems where detailed responses for all fuel assemblies are required everywhere in the reactor core. Like FW-CADIS, the SUBSPACE approach utilizes importance maps obtained from deterministic adjoint models to derive automatic weight-window biasing. Unlike FW-CADIS, the SUBSPACE approach does not employ flux-based weighting of the adjoint source term. Instead, it utilizes pseudoresponses generated with random weights to help identify the correlations between the importance maps that could be used to reduce the computational time required for global variance reduction. Numerical experiments, serving as proof of principle, are presented to compare the SUBSPACE and FW-CADIS approaches in terms of the global reduction in standard deviation and the associated figures of merit for representative nuclear reactor assembly and core models.