ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Zeyun Wu, Qiong Zhang, Hany Abdel-Khalik
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 372-382
Technical Paper | Special Issue on the Initial Release of MCNP6 / Fission Reactors | doi.org/10.13182/NT12-A15350
Articles are hosted by Taylor and Francis Online.
A new variant of a hybrid Monte Carlo-deterministic approach for simulating particle transport problems is presented and compared to the SCALE FW-CADIS approach. The new approach, denoted as the SUBSPACE approach, improves the selection of the importance maps in order to reduce the computational overhead required to achieve global variance reduction - that is, the uniform reduction of variance everywhere in the phase-space. The intended applications are reactor analysis problems where detailed responses for all fuel assemblies are required everywhere in the reactor core. Like FW-CADIS, the SUBSPACE approach utilizes importance maps obtained from deterministic adjoint models to derive automatic weight-window biasing. Unlike FW-CADIS, the SUBSPACE approach does not employ flux-based weighting of the adjoint source term. Instead, it utilizes pseudoresponses generated with random weights to help identify the correlations between the importance maps that could be used to reduce the computational time required for global variance reduction. Numerical experiments, serving as proof of principle, are presented to compare the SUBSPACE and FW-CADIS approaches in terms of the global reduction in standard deviation and the associated figures of merit for representative nuclear reactor assembly and core models.