ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
L. Mansani, C. Artioli, M. Schikorr, G. Rimpault, C. Angulo, D. De Bruyn
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 241-263
Technical Paper | Accelerators | doi.org/10.13182/NT11-96
Articles are hosted by Taylor and Francis Online.
In order to reduce the volume and the radiotoxicity of the nuclear waste coming from the operation of existing pressurized water reactors, accelerator-driven systems (ADSs) have been envisioned. The Lead-Cooled (Pb) European Facility for Industrial-Scale Transmutation (EFIT) (Pb-EFIT) plant is the first ADS design that has been going into a rather detailed engineering level. It is a lead-cooled, 385-MW(thermal) ADS prototype for minor actinide (MA) transmutation designed to achieve an optimal MA destruction rate of [approximately]42 kg/TWh(thermal).The spallation target unit is located in the center of the diagrid where 800-MeV protons from the accelerator impinge on a free surface of lead exposed to vacuum.The core inlet temperature was set at 400°C to assure a sufficiently large safety margin to lead freezing, and the core outlet temperature was limited to 480°C to allow acceptable corrosion. The ferritic-martensitic 9% Cr steel T91 protected against corrosion with alumina FeCrAlY [GESA (Gepulste Elektronen Strahl Anlage) treatment].The primary circuit is designed for effective natural circulation, i.e., relatively low pressure losses, and the design offers good protection for a heat removal system in case of a blackout accident. The EFIT plant is designed to have a low likelihood and a low degree of core damage, to eliminate the need for off-site emergency responses in case of a severe accident, to use an extensively reliable passive safety system to fulfill the safety functions, and to eliminate the need of alternating-current safety-grade power (no safety-grade diesel generator). Three systems contribute to the decay heat removal (DHR) function of Pb-EFIT: the steam generators, the direct reactor cooling system, and the isolation condenser system.The EFIT plant exhibits four primary pumps; eight steam generator units, each rated at 52 MW, provide heat removal under normal operation. On the secondary side, the water steam ensures a thermal efficiency of [approximately]40% with the superheated vapor secondary circuit, taking into account the electricity required by pumps (from both the primary circuit and the secondary circuits) but without deducing the power required for the accelerator.An estimate of the Pb-EFIT plant cost has been performed based mainly on experience and engineering judgment. A best estimate (base cost and contingency) of about €1890 million, with an overall uncertainty of 22%, has been found.