ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Alessandro Petruzzi, Dan G. Cacuci, Francesco D'Auria
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 45-100
Technical Paper | doi.org/10.13182/NSE09-37C
Articles are hosted by Taylor and Francis Online.
This work presents a paradigm application of a new methodology for simultaneously calibrating (adjusting) model parameters and responses, through assimilation of experimental data, to the benchmark transient thermal-hydraulic experiment IC1, performed at London's Imperial College. Following the description of the experimental setup, the corresponding mathematical model is developed and solved numerically. The sensitivities of typically important responses (e.g., temperatures, pressures) to model parameters are computed by applying both the forward and the adjoint sensitivity analysis procedures. These sensitivities not only identify the most important model parameters but also propagate, within the data assimilation procedure, parameter uncertainties for obtaining predictive best-estimate quantities, with reduced best-estimate uncertainties (i.e., “smaller” values for the variance-covariance matrices). This assimilation procedure also provides a quantitative indication of the degree of agreement between computations and experiments. In particular, the paradigm application presented in this work indicates the path for validating and calibrating thermal-hydraulic computational models used for reactor safety analyses. The concluding remarks highlight several important open issues, the resolution of which would significantly advance the area of predictive best-estimate modeling, while opening new avenues for applications in nuclear reactor engineering and safety.