ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The legacy of Windscale Pile No. 1
The core of Pile No. 1 at Windscale caught fire in the fall of 1957. The incident, rated a level 5, “Accident with Wider Consequences,” by the International Nuclear and Radiological Event Scale (INES), has since inspired nuclear safety culture, risk assessment, accident modeling, and emergency preparedness. Windscale also helped show how important communication and transparency are to gaining trust and public support.
Young Joo Kwon
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 264-286
Technical Paper | doi.org/10.13182/NSE09-11
Articles are hosted by Taylor and Francis Online.
This paper presents a finite element analysis of transient heat transfer in and around a hypothetical deep geological repository for a spent nuclear fuel (SNF) disposal canister and the heat generation of the SNF inside the canister to provide basic information for dimensioning the repository and configuring the repository components. Three geometric models are compared to determine the most suitable assuming the periodic allocation of boreholes where canisters are deposited. These models consist of several different material regions. Each model is horizontally limited to a region around and including a single canister, bounded by midsurfaces with variant distances between adjacent deposition tunnels and adjacent canisters, and vertically bounded by the ground surface located 500 m above the deposition tunnel and the surface located 500 m below the bottom of the borehole. Using a commercial finite element analysis code and detailed realistic finite element models of repository components, transient heat transfer analyses are carried out for up to 1000 yr after deposition of the canister into the repository. Time-dependent temperature curves at selected positions are obtained for each geometric model. Various temperature distribution changes of material regions in geometric models are also obtained.