ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ce Yi, Alireza Haghighat
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 221-247
Technical Paper | doi.org/10.13182/NSE09-110
Articles are hosted by Taylor and Francis Online.
In this paper, we present a hybrid formulation/algorithm to solve the linear Boltzmann equation, specifically for application to problems containing regions of low scattering. The hybrid approach uses the characteristics method in low scattering regions, while the remaining regions are treated with the discrete ordinates method (SN). A shared scattering kernel allows an arbitrary order of anisotropic scattering in both block-oriented solvers. A new three-dimensional transport code (TITAN) has been developed based on the hybrid approach. TITAN divides a problem model into coarse meshes (blocks) in the Cartesian geometry. The block-oriented structure allows different fine-meshing schemes (or characteristic ray densities) and angular quadrature sets for different coarse meshes. Angular and spatial projection techniques are developed to transfer angular fluxes on the interfaces of the coarse meshes. We have tested the performance and accuracy of the new hybrid algorithm within the TITAN code for a number of benchmark problems. The results of a computed tomography model and the Kobayashi benchmark problems are presented in this paper. It is demonstrated that while preserving high-level accuracy as compared to reference Monte Carlo simulations, the hybrid algorithm achieves significant computation efficiency as compared to the SN method only.