ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Maria Pusa, Jaakko Leppänen
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 140-150
Technical Paper | doi.org/10.13182/NSE09-14
Articles are hosted by Taylor and Francis Online.
The topic of this paper is the computation of the matrix exponential in the context of burnup equations. The established matrix exponential methods are introduced briefly. The eigenvalues of the burnup matrix are important in choosing the matrix exponential method, and their characterization is considered. Based on the characteristics of the burnup matrix, the Chebyshev rational approximation method (CRAM) and its interpretation as a numeric contour integral are discussed in detail. The introduced matrix exponential methods are applied to two test cases representing an infinite pressurized water reactor pin-cell lattice, and the numerical results are presented. The results suggest that CRAM is capable of providing a robust and accurate solution to the burnup equations with a very short computation time.