ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Maria Pusa, Jaakko Leppänen
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 140-150
Technical Paper | doi.org/10.13182/NSE09-14
Articles are hosted by Taylor and Francis Online.
The topic of this paper is the computation of the matrix exponential in the context of burnup equations. The established matrix exponential methods are introduced briefly. The eigenvalues of the burnup matrix are important in choosing the matrix exponential method, and their characterization is considered. Based on the characteristics of the burnup matrix, the Chebyshev rational approximation method (CRAM) and its interpretation as a numeric contour integral are discussed in detail. The introduced matrix exponential methods are applied to two test cases representing an infinite pressurized water reactor pin-cell lattice, and the numerical results are presented. The results suggest that CRAM is capable of providing a robust and accurate solution to the burnup equations with a very short computation time.