ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Oleg Roderick, Mihai Anitescu, Paul Fischer
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 122-139
Technical Paper | doi.org/10.13182/NSE08-79
Articles are hosted by Taylor and Francis Online.
In this work we describe a polynomial regression approach that uses derivative information for analyzing the performance of a complex system that is described by a mathematical model depending on several stochastic parameters.We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials; find coordinates of the projection by regression; and use derivative information to significantly reduce the number of the sample points required to obtain a good model. The simplified model can be used as a control variate to significantly reduce the sample variance of the estimate of the goal.For our test model, we take a steady-state description of heat distribution in the core of the nuclear reactor core, and as our goal we take the maximum centerline temperature in a fuel pin. For this case, the resulting surrogate model is substantially more computationally efficient than random sampling or approaches that do not use derivative information, and it has greater precision than linear models.