ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Oleg Roderick, Mihai Anitescu, Paul Fischer
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 122-139
Technical Paper | doi.org/10.13182/NSE08-79
Articles are hosted by Taylor and Francis Online.
In this work we describe a polynomial regression approach that uses derivative information for analyzing the performance of a complex system that is described by a mathematical model depending on several stochastic parameters.We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials; find coordinates of the projection by regression; and use derivative information to significantly reduce the number of the sample points required to obtain a good model. The simplified model can be used as a control variate to significantly reduce the sample variance of the estimate of the goal.For our test model, we take a steady-state description of heat distribution in the core of the nuclear reactor core, and as our goal we take the maximum centerline temperature in a fuel pin. For this case, the resulting surrogate model is substantially more computationally efficient than random sampling or approaches that do not use derivative information, and it has greater precision than linear models.