ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Youqi Zheng, Hongchun Wu, Liangzhi Cao, Nam Zin Cho
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 87-104
Technical Paper | doi.org/10.13182/NSE09-21
Articles are hosted by Taylor and Francis Online.
This paper describes Daubechies' wavelet method (DWM) for the discretization of the angular variable in the neutron transport equation. Two special features are introduced: (a) the azimuthal angle is discretized using the Daubechies' scaling function as the basis function, while the polar angle is decoupled and discretized using the discrete ordinates in a standard manner, and (b) the construction of Daubechies' wavelets on an interval is used to get around the edge effect between subdomains in the angular variable. In addition, two acceleration methods, namely, coarse mesh rebalance and coarse mesh finite difference, are implemented in DWM. The test results on several benchmark problems indicate that DWM described in this paper is capable of treating transport problems exhibiting angularly complicated behaviors, effective in mitigating ray effect, and versatile in handling transport phenomena in a variety of structured media.