ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
W. R. Marcum, B. G. Woods, M. R. Hartman, S. R. Reese, T. S. Palmer, S. T. Keller
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 261-274
Technical Paper | doi.org/10.13182/NSE08-63
Articles are hosted by Taylor and Francis Online.
Oregon State University has recently conducted a complete core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors Program. The goals of the thermal-hydraulic steady-state analysis were to calculate natural-circulation flow rates, coolant temperatures, and fuel temperatures as a function of core power, as well as peak values of fuel temperature, cladding temperature, surface heat flux, critical heat flux ratio, and temperature profiles in the hot channel for both the highly enriched uranium and low-enriched uranium cores.RELAP5-3D Version 2.4.2 was used for all computational modeling during the thermal-hydraulic analysis. This is a lumped parameter code forcing engineering assumptions to be made during the analysis. A single-hot-channel model's results are compared to results produced from more refined two- and eight-channel models in order to identify variations in thermal-hydraulic characteristics as a function of spatial refinement.