ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Nicholas Dunkle, Sandra Bogetic, Nicholas R. Brown
Nuclear Science and Engineering | Volume 200 | Number 3 | March 2026 | Pages 606-619
Research Article | doi.org/10.1080/00295639.2025.2489172
Articles are hosted by Taylor and Francis Online.
Integration of advanced nuclear reactors to industrial processes in an integrated energy system (IES) has many potential advantages. The coupling of nuclear power to varied industrial processes introduces additional accident scenarios unique to the specific systems included in the IES. Similarly, noise in one system of the IES could potentially create negative effects in the other systems. Because of the limited amount of comparable nuclear IES operating experience, there is added value in scoping the inherent behavior of these systems in response to these transients. This paper investigates the safety-related behavior of an open-source IES dynamic model of a fast spectrum molten salt reactor (MSR) powering a regenerative Rankine cycle for electricity production and a hybrid sulfur (HyS) cycle for hydrogen production. The simulations include a loss of cooling water to the Rankine cycle, a loss of sulfur in the HyS cycle, and the frequency characteristics of the entire IES across six orders of magnitude of frequency. The results show safe behavior in response to the two accident scenarios, wherein a disruption in heat transfer leads to increased salt temperatures and a decrease in reactor power. The frequency analysis shows that at higher frequencies, temperature changes propagating through an IES are increasingly damped to the point of negligibility.