ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Hanlin Shu, Liangzhi Cao, Qingming He, Tao Dai
Nuclear Science and Engineering | Volume 200 | Number 1 | January 2026 | Pages 195-221
Regular Research Article | doi.org/10.1080/00295639.2025.2480517
Articles are hosted by Taylor and Francis Online.
The unstructured mesh (UM)–based Monte Carlo (MC) method has gained significant attention for its adaptability to complex geometries and seamless compatibility with multiphysics coupling simulations, offering distinct advantages over conventional constructive solid geometry–based approaches. However, when tackling large-scale problems with numerous UM elements, memory bottlenecks may arise, limiting the practical application of MC simulations. In this study, a delta-tracking–based domain decomposition scheme tailored for UM-based MC simulations is proposed. This approach has been implemented in the MC code NECP-MCX, utilizing a bounding interval hierarchy framework to improve the scalability of UM-based MC simulations. Additionally, a run-time–evaluated processor allocation strategy was developed to automatically mitigate the deterioration of computational efficiency caused by imbalanced workloads. The developed code was validated using the Light Water Reactor Pool Reactor Benchmark and the Virtual Environment for Reactor Applications Core Physics Benchmark (Problems 1, 3, and 4). Furthermore, the effectiveness of the load-balancing optimization strategy was assessed using the Kobayashi Benchmark (Problem 3), known for its deep-penetration characteristics. The results were in good agreement with reference data and demonstrated reproducibility across simulations. In problems exceeding the per-processor memory capacity, the proposed domain decomposition scheme outperformed the sole domain replication scheme in efficiency. Moreover, this efficiency advantage was sustained across various scenarios, including deep-penetration problems, owing to the automatic load-balancing optimization strategy.