ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
Kyle M. Paaren, Jason Schulthess, Jason Barney, Hakan Ozaltun
Nuclear Science and Engineering | Volume 200 | Number 1 | January 2026 | Pages 112-122
Research Article | doi.org/10.1080/00295639.2025.2545155
Articles are hosted by Taylor and Francis Online.
The United States High Performance Research Reactor Program’s objective is to reduce the amount of highly enriched uranium currently implemented in research reactors. The conversion of these research reactors requires designing a monolithic U10Mo plate fuel, with the fuel plate geometry being dependent on each research reactor. The process of forming the plates includes a hot isostatic pressing (HIP) to manufacture a prototypic plate. In the case of the Missouri University Research Reactor (MURR) design demonstration element (DDE) plate manufacture, plates that have been through HIP are then curved using dies and a hydraulic press to impart the desired curvature. Both fabrication processes impart residual stresses into each fuel plate region, with the curvature of the plates taking some regions of the fuel plate up to their material yield stresses, accompanied by plastic strain. The amount of plastic strain and stress imparted onto each MURR DDE plate is determined by the radius of curvature, thickness of each region, and overall width of the fuel plates. This work aims to predict the yield stresses and strain using ABAQUS to simulate the proposed fabrication process of the MURR DDE plates, accompanied by discussion over the stresses and strains as to their relation to nuclear fuel performance and the impact they will have during early irradiation.