ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Michael J. Worrall, Joseph W. Nielsen
Nuclear Science and Engineering | Volume 200 | Number 1 | January 2026 | Pages 58-68
Research Article | doi.org/10.1080/00295639.2024.2397623
Articles are hosted by Taylor and Francis Online.
In order to ease the computational burden associated with designing irradiation experiments in the Advanced Test Reactor (ATR), scaling factors are often used to estimate design parameters at different lobe powers. This paper examines the validity of long-standing assumptions about the contribution of lobe power to total experiment heating in the ATR. For each of the ATR’s 77 different experiment positions, the fractional contribution of each of the ATR’s five lobes to the total heating in that position is calculated and compared to traditional assumptions. The updated fractional contributions are then used to scale heating rates in a sample problem, and the results are compared to traditional scaling methods as well as explicit MC21 heating calculations.
It is concluded that for experiment locations in close proximity to the ATR driver fuel (i.e. flux traps and the A, H, and B positions), heating rates scaled with the updated fractional contributions generally agree better with explicit MC21 calculations than do heating rates scaled using the traditionally assumed contributions. For the I positions, which are located on the very periphery of the ATR core, both scaling methods led to poor results when compared against explicit calculations due to the effect that movement of the outer shim control cylinders has on the experiment heating in those positions.