ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Palash K. Bhowmik, Richard H. Howard, Braden Clayton, Piyush Sabharwall, Susan Hogle, Allen Roach, Joseph W. Nielsen, Misti Lillo, Bryce D. Kelly, Brenden Heidrich, Andrew Zillmer
Nuclear Science and Engineering | Volume 200 | Number 1 | January 2026 | Pages 1-17
Review Article | doi.org/10.1080/00295639.2025.2512258
Articles are hosted by Taylor and Francis Online.
Irradiation experiments are a prerequisite for evaluating nuclear reactor system designs, analyzing the performance of these systems, and obtaining licenses. Likewise, irradiation facilities are necessary for producing the radioisotopes used in industrial and medical applications. Recent developments in modeling and simulation capabilities and advancements in computational resources have further enabled the design of irradiation experiments for evaluating radiation-induced phenomena and determining nuclear fuel, material, and system design and safety criteria pertaining to both normal and accident scenarios. These computational tools and models require comprehensive experimental datasets acquired under prototypic radiation conditions—for exploring material and system performance under the uniquely harsh environments found in nuclear reactors—to enable verification and validation for qualification and licensing purposes. However, qualification of irradiation experimental facilities, primarily research and test reactors (RTRs), necessitates that their performance be evaluated based on the irradiation environment (e.g. flux, power, testing capabilities) using an appropriate scoring matrix. Although many university campus RTRs are available for research and development (R&D) activities and initiatives, this study focuses on evaluating and qualifying the irradiation facilities (mostly RTRs) within the United States that are suitable for advanced nuclear fuel, material, and system irradiation experiments aimed at establishing operational-performance limits and informing component and fuel designs so as to improve operational efficiencies and mitigate proliferation vulnerabilities, as well as for radioisotope production aimed at multipurpose applications. The findings of the present study support the acceleration of nuclear fuel and material qualifications, thus hastening new and advanced nuclear energy system demonstrations and radioisotope production efforts by using extended R&D.