ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Ragai Altamimi, Donald Doyle, Jason R. Trelewicz, Nicholas R. Brown
Nuclear Science and Engineering | Volume 199 | Number 11 | November 2025 | Pages 1971-1985
Research Article | doi.org/10.1080/00295639.2025.2474878
Articles are hosted by Taylor and Francis Online.
Estimating the equilibrium state for pebble bed reactors (PBRs) presents complex challenges as it requires simultaneous consideration of changes in the pebbles’ movement as well as their fuel compositions. Whereas traditional approaches use multigroup diffusion codes for neutronics calculations of PBRs’ equilibrium state, the double-heterogeneity of PBRs complicates neutron cross-section generation. Continuous-energy Monte Carlo (MC) methods are better suited for detailed PBR analysis because of their natural handling of double-heterogeneity, but they demand substantially more computational resources. This study introduces a novel method for efficiently estimating the equilibrium state in small and micro PBRs with reduced computational cost. The method is anticipated to accelerate the processes of core design and performing parametric studies for utilizing advanced fuel and structural materials. The HTR-10 reactor design was used for validating the method’s predictions and evaluating its computational efficiency. When compared to reference calculation values from the literature, criticality (k-effective) was predicted to be approximately within the margin of error of the MC transport calculation, average core power density (in megawatts per cubic meter) was predicted within 2.5% relative error, and maximum thermal flux (1013 n/cm2.s−1) was predicted within 1.8% relative error. The calculated inventory of fission products and fuel composition in the equilibrium core were within 15% and 16.6%, respectively, when compared to reported values from the literature. The difference is attributed to variance in the considered values of the core temperature, which was found to significantly affect the depletion analyses.