ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Ragai Altamimi, Donald Doyle, Jason R. Trelewicz, Nicholas R. Brown
Nuclear Science and Engineering | Volume 199 | Number 11 | November 2025 | Pages 1971-1985
Research Article | doi.org/10.1080/00295639.2025.2474878
Articles are hosted by Taylor and Francis Online.
Estimating the equilibrium state for pebble bed reactors (PBRs) presents complex challenges as it requires simultaneous consideration of changes in the pebbles’ movement as well as their fuel compositions. Whereas traditional approaches use multigroup diffusion codes for neutronics calculations of PBRs’ equilibrium state, the double-heterogeneity of PBRs complicates neutron cross-section generation. Continuous-energy Monte Carlo (MC) methods are better suited for detailed PBR analysis because of their natural handling of double-heterogeneity, but they demand substantially more computational resources. This study introduces a novel method for efficiently estimating the equilibrium state in small and micro PBRs with reduced computational cost. The method is anticipated to accelerate the processes of core design and performing parametric studies for utilizing advanced fuel and structural materials. The HTR-10 reactor design was used for validating the method’s predictions and evaluating its computational efficiency. When compared to reference calculation values from the literature, criticality (k-effective) was predicted to be approximately within the margin of error of the MC transport calculation, average core power density (in megawatts per cubic meter) was predicted within 2.5% relative error, and maximum thermal flux (1013 n/cm2.s−1) was predicted within 1.8% relative error. The calculated inventory of fission products and fuel composition in the equilibrium core were within 15% and 16.6%, respectively, when compared to reported values from the literature. The difference is attributed to variance in the considered values of the core temperature, which was found to significantly affect the depletion analyses.