ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Yu Yang, Helin Gong, Qiaolin He, Qihong Yang, Yangtao Deng, Shiquan Zhang
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1075-1096
Research Article | doi.org/10.1080/00295639.2023.2236840
Articles are hosted by Taylor and Francis Online.
We performed uncertainty analysis and further numerical studies on the data-enabled physics-informed neural network (DEPINN). The purpose of DEPINN is to accurately and efficiently use a small amount of prior data to solve the neutron diffusion eigenvalue equations based on the physics-informed neural network. However, in practical engineering experiments, these prior data are acquired through different kinds of sensors, which are inevitably polluted by noise. Numerical results of three typical benchmark problems show that the classical DEPINN is not so robust with respect to noise. To improve the noise robustness, we propose an interval loss function to deal with the noisy prior data term; the weight of the noisy prior data term is also set to be noise dependent. Numerical results show that the proposed framework effectively enhances the robustness of DEPINN and improves the efficiency of utilizing the noisy prior data and thus promotes the engineering application of DEPINN.