ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Yu Yang, Helin Gong, Qiaolin He, Qihong Yang, Yangtao Deng, Shiquan Zhang
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1075-1096
Research Article | doi.org/10.1080/00295639.2023.2236840
Articles are hosted by Taylor and Francis Online.
We performed uncertainty analysis and further numerical studies on the data-enabled physics-informed neural network (DEPINN). The purpose of DEPINN is to accurately and efficiently use a small amount of prior data to solve the neutron diffusion eigenvalue equations based on the physics-informed neural network. However, in practical engineering experiments, these prior data are acquired through different kinds of sensors, which are inevitably polluted by noise. Numerical results of three typical benchmark problems show that the classical DEPINN is not so robust with respect to noise. To improve the noise robustness, we propose an interval loss function to deal with the noisy prior data term; the weight of the noisy prior data term is also set to be noise dependent. Numerical results show that the proposed framework effectively enhances the robustness of DEPINN and improves the efficiency of utilizing the noisy prior data and thus promotes the engineering application of DEPINN.