ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Yousef M. Farawila, Daniel R. Tinkler
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 945-979
Research Article | doi.org/10.1080/00295639.2023.2227836
Articles are hosted by Taylor and Francis Online.
Neutron flux modal decomposition is a key tool for analytical and reduced order modeling of boiling water reactor (BWR) stability and oscillations. As a minimum, the fundamental flux mode is used for representing global oscillations while the addition of at least one azimuthal harmonic is needed for simulating the regional out-of-phase mode. Unlike the fundamental and first azimuthal modes, the excitation of an axial flux mode alters the axial power shape but not the total power in the channel and therefore cannot be self-sustained when coupled to density wave–generated reactivity, presumably explaining why it has not been explicitly included in previously published models. Although not self-sustained, the axial mode excitation driven by density wave propagation and interactions with other spatial modes play important roles in interpreting observed BWR stability and oscillations particularly in the nonlinear regime when the oscillation magnitude is large. In this paper, the characteristics of the steady-state axial modes are presented, and their impact on oscillation dynamics for small and large amplitudes of both the global and the regional oscillations is studied using reduced order analytical tools. Aside from the oscillating component, our research results identify an average nonzero axial mode component to develop during limit cycle oscillations that causes the average axial power profile to shift toward the bottom of the core and thus contributes a negative reactivity component. The emergence of this nonzero average axial mode component and the associated negative reactivity were found to diminish the power increase due to global mode power oscillations and contribute to nonlinear stabilization of regional oscillations. The physical interpretation of nonlinear power oscillations with the inclusion of the axial mode component resolves previously unexplained results obtained from high-fidelity numerical models.