ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Yousef M. Farawila, Daniel R. Tinkler
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 945-979
Research Article | doi.org/10.1080/00295639.2023.2227836
Articles are hosted by Taylor and Francis Online.
Neutron flux modal decomposition is a key tool for analytical and reduced order modeling of boiling water reactor (BWR) stability and oscillations. As a minimum, the fundamental flux mode is used for representing global oscillations while the addition of at least one azimuthal harmonic is needed for simulating the regional out-of-phase mode. Unlike the fundamental and first azimuthal modes, the excitation of an axial flux mode alters the axial power shape but not the total power in the channel and therefore cannot be self-sustained when coupled to density wave–generated reactivity, presumably explaining why it has not been explicitly included in previously published models. Although not self-sustained, the axial mode excitation driven by density wave propagation and interactions with other spatial modes play important roles in interpreting observed BWR stability and oscillations particularly in the nonlinear regime when the oscillation magnitude is large. In this paper, the characteristics of the steady-state axial modes are presented, and their impact on oscillation dynamics for small and large amplitudes of both the global and the regional oscillations is studied using reduced order analytical tools. Aside from the oscillating component, our research results identify an average nonzero axial mode component to develop during limit cycle oscillations that causes the average axial power profile to shift toward the bottom of the core and thus contributes a negative reactivity component. The emergence of this nonzero average axial mode component and the associated negative reactivity were found to diminish the power increase due to global mode power oscillations and contribute to nonlinear stabilization of regional oscillations. The physical interpretation of nonlinear power oscillations with the inclusion of the axial mode component resolves previously unexplained results obtained from high-fidelity numerical models.