ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Yousef M. Farawila, Daniel R. Tinkler
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 945-979
Research Article | doi.org/10.1080/00295639.2023.2227836
Articles are hosted by Taylor and Francis Online.
Neutron flux modal decomposition is a key tool for analytical and reduced order modeling of boiling water reactor (BWR) stability and oscillations. As a minimum, the fundamental flux mode is used for representing global oscillations while the addition of at least one azimuthal harmonic is needed for simulating the regional out-of-phase mode. Unlike the fundamental and first azimuthal modes, the excitation of an axial flux mode alters the axial power shape but not the total power in the channel and therefore cannot be self-sustained when coupled to density wave–generated reactivity, presumably explaining why it has not been explicitly included in previously published models. Although not self-sustained, the axial mode excitation driven by density wave propagation and interactions with other spatial modes play important roles in interpreting observed BWR stability and oscillations particularly in the nonlinear regime when the oscillation magnitude is large. In this paper, the characteristics of the steady-state axial modes are presented, and their impact on oscillation dynamics for small and large amplitudes of both the global and the regional oscillations is studied using reduced order analytical tools. Aside from the oscillating component, our research results identify an average nonzero axial mode component to develop during limit cycle oscillations that causes the average axial power profile to shift toward the bottom of the core and thus contributes a negative reactivity component. The emergence of this nonzero average axial mode component and the associated negative reactivity were found to diminish the power increase due to global mode power oscillations and contribute to nonlinear stabilization of regional oscillations. The physical interpretation of nonlinear power oscillations with the inclusion of the axial mode component resolves previously unexplained results obtained from high-fidelity numerical models.