ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Elad Steinberg, Shay I. Heizler
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2343-2355
Research Article | doi.org/10.1080/00295639.2023.2190728
Articles are hosted by Taylor and Francis Online.
This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can “propagate” only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process.
In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level.