ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Elad Steinberg, Shay I. Heizler
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2343-2355
Research Article | doi.org/10.1080/00295639.2023.2190728
Articles are hosted by Taylor and Francis Online.
This work generalizes the discrete implicit Monte Carlo (DIMC) method for modeling the radiative transfer equation from a gray treatment to a frequency-dependent one. The classic implicit Monte Carlo (IMC) algorithm, which has been used for several decades, suffers from a well-known numerical problem, called teleportation, where the photons might propagate faster than the exact solution due to the finite size of the spatial and temporal resolution. The semi-analog Monte Carlo algorithm proposed the use of two kinds of particles, photons and material particles, that are born when a photon is absorbed. The material particle can “propagate” only by transforming into a photon due to black-body emissions. While this algorithm produces a teleportation-free result, its results are noisier compared to the IMC due to the discrete nature of the absorption-emission process.
In a previous work, Steinberg and Heizler [ApJS, Vol. 258, p. 14 (2022)] proposed a gray version of DIMC that makes use of two kinds of particles, and therefore has teleportation-free results, but also uses the continuous absorption algorithm of IMC, yielding smoother results. This work is a direct frequency-dependent (energy-dependent) generalization of the DIMC algorithm. We find in several one- and two-dimensional benchmarks that the new frequency-dependent DIMC algorithm yields teleportation-free results on one hand, and smooth results with an IMC-like noise level.