ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
B. D. Ganapol, Ó. López Pouso
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2327-2342
Research Article | doi.org/10.1080/00295639.2023.2194228
Articles are hosted by Taylor and Francis Online.
The Fokker-Planck equation (FPE) is one of the quintessential equations of particle transport theory. Representing small angle scattering characteristics of electron and photon transport by differential scattering indeed is a mathematical/numerical challenge. Here, we address the challenge with the method of response matrix applied to the Sn approximation to arrive at a nearly six-place-precision benchmark. Our approach aligns with the response matrix solution of the radiative transfer equation for anisotropic scattering published previously. We conclude with the comparison of the response matrix benchmark to a classical finite difference approximation.