ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Mathieu N. Dupont, Daniel J. Siefman, Justin B. Clarity, Catherine M. Percher
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1972-1990
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2151785
Articles are hosted by Taylor and Francis Online.
To improve the nuclear data testing and validation of advanced reactors, such as pebble-bed high-temperature gas-cooled reactors, molten salt reactors, and heat pipe microreactors, a conceptual design for a novel critical assembly using a horizontal split table (HST) was developed jointly by Oak Ridge National Laboratory and Lawrence Livermore National Laboratory. The mechanical design is led by Lawrence Livermore National Laboratory, whereas the neutronics considerations are led by Oak Ridge National Laboratory. The characteristics of the designed HST and the benefits of performing such an experiment to the community are included. As a proof of concept, a proposed critical experiment using tristructural isotropic fuel particles and a graphite moderator/reflector is described, mimicking a pebble-bed-type advanced reactor based on the HTR-10. A critical configuration corresponding to a footprint of about 4.5 m2 was determined with SCALE/KENO-VI to fit the planned dimensions of the HST. The similarity of the pebble-bed design and the HTR-10 reactor application was assessed using SCALE/TSUNAMI, and a similarity coefficient, ck, of 0.9982 was obtained, proving that the concept will be useful for cold-critical validation and for nuclear data validation and assimilation of pebble-bed-type advanced reactors.
In the proposed design, the materials with the highest keff sensitivity are graphite and uranium, which demonstrates that particular care must be given to carbon-related cross-section data. A cross-section library study was performed to test the influence of the different recent releases of the ENDF/B cross-section library on the concept’s keff. The effect of mechanical uncertainties between the fixed and moving tables was also assessed by calculating the reactivity change caused by vertical and horizontal gaps, as well as angular and torsion offsets between the two sides of the HST concept. As a last analysis step, the performed nuclear data assimilation of the hypothetical experiment showed that uncertainties can be reduced by several hundred pcm. The same analysis process is currently being used to create a molten salt advanced reactor–type HST concept based on the Molten Salt Reactor Experiment.