ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
J. A. Grzesik
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1255-1263
Technical Note | doi.org/10.1080/00295639.2022.2138064
Articles are hosted by Taylor and Francis Online.
We undertake to derive herein the Wigner-Wilkins (W-W) neutron/nucleus scattering kernel, a foundation stone in neutron thermalization theory, on the basis of a self-contained calculation in quantum mechanics. Indeed, a quantum-mechanical derivation of the W-W kernel is available in the literature, but it is, in our opinion, robbed of conviction by being couched in terms of an excessive generality. Here, by contrast, we proceed along a self-contained route relying on the Fermi pseudopotential and a first-order term in a time-dependent Born approximation series. Our calculations are fully explicit at every step, and, in particular, we tackle in its every detail a final integration whose result is merely stated in the available literature. Furthermore, and perhaps the most important point of all, we demonstrate that the quantum-mechanical W-W kernel outcome is identical down to the last iota with its classical antecedent, classical not only by virtue of historical precedence but also by being based on classical Newtonian mechanics.