ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Shuai Wang, He Xue, Guiyi Wu, Zheng Wang, Kuan Zhao, Chenqiang Ni
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 623-632
Technical Paper | doi.org/10.1080/00295639.2022.2123210
Articles are hosted by Taylor and Francis Online.
Low alloy steel SA508 autogenously welded with Type 309L/308L austenitic stainless steel cladding is one of the common forms of the dissimilar metal weld joint (DMWJ) in the primary water of a pressurized water reactor (PWR). Accurate evaluation of the inhomogeneous mechanical propriety and crack growth driving force at the corresponding place on the DMWJ is important for integrity analyses of a PWR. In this study, the mechanical propriety of the DMWJ was obtained using a combined Vickers hardness test and the stress-hardness relationship. And, a finite element (FE) model for the DMWJ in a PWR with continuous transition mechanical propriety was built using a predefined temperature field method. Based on consideration of the heterogeneity mechanical properties on the DMWJ with the continuous transition mechanical propriety, the Mises stress distribution and J integral on the crack tip with different crack lengths was analyzed using elastoplastic FE analysis. As shown by the distribution profile of the Mises stress distribution and J integral on the crack tip, the inhomogeneous mechanical propriety distribution is found to significantly affect the crack driving force when the crack tip is close to the fusion boundary.