ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
B. D. Ganapol
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 1-13
Technical Paper | doi.org/10.1080/00295639.2022.2097494
Articles are hosted by Taylor and Francis Online.
Here, we are concerned with a new, highly precise, numerical solution to the one-dimensional neutron transport equation based on Case’s analytical, singular eigenfunction expansion (SEE). While a considerable number of numerical solutions currently exist, understandably, because of its complexity even in one dimension, there are only a few truly analytical solutions to the neutron transport equation. In 1960, Case introduced a consistent theory of the SEE for a variety of idealized transport problems and forever changed the landscape of analytical transport theory. Several numerical methods, including the Fn method, were based on the theory. What is presented is yet another, called the Lagrange order N method (LNM) featuring the simplicity and precision of the Fn method, but for a more convenient and natural Lagrangian polynomial basis.