ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Brian J. Ade, Benjamin R. Betzler, Joseph R. Burns, Christopher W. Chapman, Jianwei Hu
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1539-1558
Technical Paper | doi.org/10.1080/00295639.2022.2035157
Articles are hosted by Taylor and Francis Online.
Recent developments in manufacturing large metal hydrides are enabling their use as a moderator for advanced reactor designs. Yttrium hydride (YHx) is particularly attractive for small reactor designs because of its ability to retain a high hydrogen density at elevated temperatures. Design iteration for the Transformational Challenge Reactor (TCR), which uses a YH1.85 moderator, revealed positive moderator temperature coefficients. A positive temperature coefficient for YHx is expected regardless of the core design, however, the positive moderator coefficient exceeded that of the negative fuel temperature coefficient in some early TCR design iterations. The cause of the positive moderator coefficient is analyzed, and conditions for which positive temperature coefficients would be expected are identified for a number of fuel and moderator geometry layouts for dense tristructural isotropic/silicon carbide fuel and UO2 fuel.