ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Praneeth Kandlakunta, Matthew Van Zile, Lei Raymond Cao
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1383-1396
Technical Paper | doi.org/10.1080/00295639.2022.2091905
Articles are hosted by Taylor and Francis Online.
The feasibility of using solar cells for post-detonation monitoring, and more broadly, gamma-ray monitoring, is evaluated using Monte Carlo simulations and experiments in this work. We measured the short-circuit current Isc response of commercial silicon (Si) solar cells to 137Cs and 60Co gamma rays. A clear response of both mono- and polycrystalline Si solar cells to 137Cs and 60Co gamma rays was obtained in good agreement with the simulations. Radiation effects in solar cells due to accumulated gamma-ray dose were noticed as the drop in Isc and open-circuit voltage Voc. The atomic displacement cross section of the produced secondary fast electrons and nonionizing energy loss (NIEL) concepts were revisited to understand the principal gamma-radiation damage mechanism in solar cell devices. Analytical computations of and NIEL of electrons convoluted with simulated Compton electron distributions in Si enabled a fundamental understanding of the gamma-radiation effects and recovery mechanism in solar cells, further supporting the experimental results. Different from the ionization effects in the polymer and glass layers of a solar cell/panel, displacement damage in the Si p-n layer from gamma rays or fast electrons is much less than that from massive particles, which directly affects the charge collection performance fundamental to solar cell operation.