ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
D. L. Porter, D. C. Crawford
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S110-S122
Technical Paper | doi.org/10.1080/00295639.2021.2009983
Articles are hosted by Taylor and Francis Online.
The Fuel Performance Design Basis for the Versatile Test Reactor begins with requirements to maintain safe and efficient reactor operation. For the metal-fueled Versatile Test Reactor, this means a limited number of fuel rod breaches, no fuel melting under steady-state operation and anticipated transients, and continuity of the fuel rod and assembly configuration to avoid impacts to operations of safety systems, maintain expected coolant flow, and allow for efficient fuel handling. Using a large database gathered from previous testing, data were examined to identify and establish preliminary limits on fuel operating conditions. Fuel performance aspects important to fuel operating limits have been identified, including cladding creep, which is addressed with a cladding deformation limit to ensure a limited cladding breach. In addition, fuel-cladding chemical interaction is addressed through limits on cladding temperature and time-at-temperature for steady-state operation, transients, and accidents to mitigate effects leading to cladding breach or fuel melting. Through the implementation of these limits, cladding breach, fuel melting, and deleterious fuel rod and assembly dimensional changes will be prevented.