ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Khaled Talaat, Osman Anderoglu
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1209-1223
Technical Paper | doi.org/10.1080/00295639.2022.2062107
Articles are hosted by Taylor and Francis Online.
Mass transfer is the dominant mode of structural material corrosion in energy systems employing heavy liquid metal coolant such as lead-cooled reactors. Modeling efforts in the literature have focused on materials science aspects, such as diffusive transport of alloying elements in structural materials and oxide layers, oxide layer growth and erosion, and species dissolution at the interface, but they have overlooked convective transport which is often represented by simplified one-dimensional models with no transverse convection. Here, within a Lagrangian framework, we particularly study the convective transport of dissolved elements at specimen boundaries in a flowing molten lead loop. Three-dimensional transient Reynolds-averaged Navier-Stokes simulations coupled with particle transport are carried out to compare convective transport in lead and other coolants, such as lead-bismuth eutectic, pressurized water, and sodium. Transverse convection in the narrow test section is observed to occur at a timescale comparable to longitudinal (downstream) transport and removal of particles from the test section, which highlights the need for three-dimensional modeling in the present setup. The effects of temperature, surface roughness, and mean flow velocity on convective transport in lead are investigated. While mean flow velocity is the dominant variable affecting convective mass transfer, increased surface roughness and reduced temperature are also shown herein to moderately enhance convective transfer.