ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Khaled Talaat, Osman Anderoglu
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1209-1223
Technical Paper | doi.org/10.1080/00295639.2022.2062107
Articles are hosted by Taylor and Francis Online.
Mass transfer is the dominant mode of structural material corrosion in energy systems employing heavy liquid metal coolant such as lead-cooled reactors. Modeling efforts in the literature have focused on materials science aspects, such as diffusive transport of alloying elements in structural materials and oxide layers, oxide layer growth and erosion, and species dissolution at the interface, but they have overlooked convective transport which is often represented by simplified one-dimensional models with no transverse convection. Here, within a Lagrangian framework, we particularly study the convective transport of dissolved elements at specimen boundaries in a flowing molten lead loop. Three-dimensional transient Reynolds-averaged Navier-Stokes simulations coupled with particle transport are carried out to compare convective transport in lead and other coolants, such as lead-bismuth eutectic, pressurized water, and sodium. Transverse convection in the narrow test section is observed to occur at a timescale comparable to longitudinal (downstream) transport and removal of particles from the test section, which highlights the need for three-dimensional modeling in the present setup. The effects of temperature, surface roughness, and mean flow velocity on convective transport in lead are investigated. While mean flow velocity is the dominant variable affecting convective mass transfer, increased surface roughness and reduced temperature are also shown herein to moderately enhance convective transfer.