ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Cheol Ho Pyeon, Kota Morioka
Nuclear Science and Engineering | Volume 196 | Number 10 | October 2022 | Pages 1147-1160
Technical Paper | doi.org/10.1080/00295639.2022.2070385
Articles are hosted by Taylor and Francis Online.
Nuclear data–induced uncertainty of criticality is successfully analyzed by combining the eigenvalue calculations, the uncertainty, and the reduction of uncertainty with the use of the KENO-VI code, the TSUNAMI-3D and the TSURFER modules of the SCAL6.2.4 code system, respectively. The comparative study of conventional and revised S(α, β) applications is also conducted by KENO-VI. Notably, the KENO-VI analyses reveal the difference between the experimental and numerical results of criticality and the neutron spectrum dependence of criticality on the H/U ratio in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA). The difference is identified as the leading cause of uncertainty in the 235U fission spectrum (χ value) through the combined use of the uncertainty and the cross-section adjustment by TSUNAMI-3D and TSURFER, respectively, especially that the highly enriched uranium (HEU) fuel is loaded into the KUCA cores. Also, the neutron spectrum dependence of criticality is attributable to the uncertainty induced by the cross-section data of 235U capture, 27Al elastic scattering, and inelastic scattering reactions in the HEU fuel plate and to the 1H capture reactions in the polyethylene moderator through the TSUNAMI-3D analyses.