ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Xinwu Su, Yongli Xu, Yinlu Han
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1031-1047
Technical Paper | doi.org/10.1080/00295639.2022.2049990
Articles are hosted by Taylor and Francis Online.
All of the reaction cross sections, angular distributions, energy spectra, and double-differential cross sections are consistently calculated and analyzed for the neutron-induced 46,47,49,50,nat.Ti reactions below 20 MeV. Concurrently, the present work uses the optical model; the unified Hauser-Feshbach theory; the exciton model, which includes the improved Iwamoto-Harada model; and the distorted wave Born approximation theory. Especially, the recoil effect is taken into account in the calculation to keep the energy balance of whole reaction processes. Theoretical calculations are compared with existing experimental data and other evaluated data in ENDF/B-VIII, JENDL-4, and JEFF-3 below 20 MeV. Our theoretical calculated results agree with the experimental data and give a better description than the other evaluations for all reactions.