ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Elham Gharibshahi, Miltos Alamaniotis
Nuclear Science and Engineering | Volume 196 | Number 8 | August 2022 | Pages 1006-1019
Technical Paper | doi.org/10.1080/00295639.2022.2035182
Articles are hosted by Taylor and Francis Online.
In this paper, the optical properties of lead-thorium (Pb-Th), lead-uranium (Pb-U), and lead-cobalt (Pb-Co) nuclear nanoparticles in a container filled with water are simulated and modeled employing finite element analysis (FEA) for diverse particle sizes. The simulated absorption maxima of electronic excitations of nuclear nanoparticles such as Pb-U are red-shifted from 375 to 380 nm for the first peak, from 595 to 600 nm for the second peak, and from 730 to 740 nm for the third peak with increasing particle sizes from core U: 7 nm and shell Pb: 2 nm to core U: 9 nm and shell Pb: 2 nm. Moreover, the absorption peak of the Pb-Th and Pb-Co nanoparticles is red-shifted by increasing the particle size. The FEA-simulated optical band gap energies of Pb-Th, Pb-U, and Pb-Co nanoparticles were also obtained, and the data decreased with increasing the particle size. FEA-based simulations have disclosed restrictions intended for Pb-Th and Pb-Co nanoparticles size greater than 9 nm and for Pb-U nanoparticles size larger than 11 nm. The simulation method in this research enables the prediction of optical properties and contributes to the understanding and design of Pb-Th, Pb-U, and Pb-Co nanoparticles in the water container before manufacturing and functionalizing them. The work here is of particular interest in the nuclear security domain and in the nondestructive, remote detection of special nuclear materials (SNM) in water-filled cargo containers, whose manual inspection imposes physical and financial challenges.