ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Arvind Sundaram, Hany Abdel-Khalik, Ahmad Al Rashdan
Nuclear Science and Engineering | Volume 196 | Number 8 | August 2022 | Pages 911-926
Technical Paper | doi.org/10.1080/00295639.2022.2043542
Articles are hosted by Taylor and Francis Online.
This work addresses how analysts of a high-valued system (e.g., nuclear reactor, aircraft turbine designs) can extract findable, accessible, interoperable, and reusable scientific data for public dissemination to artificial intelligence and machine-learning (AI/ML) researchers in a manner that cannot be reverse-engineered, potentially compromising sensitive or proprietary information. State-of-the-art methods address this problem through data masking techniques, which allow access to a subset of the information while obfuscating private and potentially identifying information (e.g., personally identifying medical data). These methods are unsuitable for industrial engineering processes, where AI/ML tools need explicit access to all the data available to draw the best inference about the system to help optimize its performance and identify its vulnerabilities, etc. Our novel deceptive infusion of data paradigm provides a solution to this conundrum by developing a mathematical approach capable of concealing the identity of the system while providing full access to all the features employed by AI/ML tools to ensure their optimal performance.