ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Abhishek Chakraborty, Suneet Singh, M. P. S. Fernando
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 715-734
Technical Paper | doi.org/10.1080/00295639.2021.2011670
Articles are hosted by Taylor and Francis Online.
Large nuclear reactors operating in the thermal spectrum are prone to both global and regional oscillations in power due to variation of 135Xe concentration. These power oscillations are self-stabilizing up to a certain operating power level, beyond which spatial power control becomes necessary for suppressing these oscillations. Especially for large pressurized heavy water reactors (PHWRs), which are natural uranium–fueled reactors using heavy water as coolant and moderator, the modes of xenon instabilities decide the extent and scheme for spatial power control. In this paper, the effect of spatial control on the bifurcation characteristics is demonstrated using a two-region model. The error signal for movement of the reactivity device has a global component for bulk power control and a local component for regional power control. The amount of regional power control determines the power level at which the spatial xenon oscillations stabilize. Using bifurcation analysis, it is found that in case of limited regional control, both supercritical and subcritical Hopf bifurcations exist, whereas in the case of increased regional control only supercritical Hopf bifurcations exist. However, these supercritical Hopf oscillations are due to time lag in control and have short timescales and lower amplitudes as compared to xenon oscillations. Hence, a proper choice of spatial control enables a PHWR to operate at rated full power capacity without any spatial Xenon instability.