ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Rodolfo M. Ferrer, HyeongKae Park
Nuclear Science and Engineering | Volume 196 | Number 6 | June 2022 | Pages 637-650
Technical Paper | doi.org/10.1080/00295639.2021.2011668
Articles are hosted by Taylor and Francis Online.
The recently developed High-Order, Low-Order scheme for the solution of thermal radiative transfer problems is applied as an acceleration method to the neutral particle transport equation. The resulting Corner Balance Nonlinear Diffusion Acceleration (CB-NDA) is derived, and a stability analysis is performed in conjunction with moment-based, spatially linear discretizations. These spatial discretizations correspond to the lumped Linear Discontinuous (LD) and Linear Characteristic (LC) schemes, which possess the thick diffusion limit. The lumped LD and LC schemes satisfy corner balance equations, which in turn are used to derive the CB-NDA. Two variants of the CB-NDA include the net current and partial current formulations. Numerical results are presented that verify the theoretical predictions and implementation. Theoretical spectral radius from the analysis is verified by comparison to values from the numerical solution of a one-dimensional transport problem. Results indicate similar stability between the CB-NDA–accelerated lumped LD and LC schemes. The net current–based CB-NDA is found to be unstable whereas the partial current formulation remains stable over the range of scattering ratios and optical thicknesses.