ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Mohammed Alqahtani, Adriaan Buijs, Meshari ALQahtani
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 614-622
Technical Paper | doi.org/10.1080/00295639.2021.2003651
Articles are hosted by Taylor and Francis Online.
Changes in the thermal power of a nuclear research reactor will lead to changes in experimental, irradiation, and testing conditions. Consequently, reactor core parameters are inevitably susceptible to changes. One such parameter is gamma heating (GH), which results from gamma interaction with materials. In this work, a gamma thermometer was used to measure GH over the course of 7 operational days and nights. In addition, the Monte Carlo reactor physics code Serpent-2 was used to evaluate the sensitivity of common detection methods for monitoring reactor core parameters such as neutron fluxes, GH, and gamma flux under the following conditions: reactor core power variation, reactor core fuel shuffling, and detector vicinity fuel assembly shuffling. The GH values obtained through measurements and calculations were linearly proportional to the reactor power. In addition, the Serpent-2 code for the McMaster nuclear reactor showed that despite maintaining the reactor power core at the same level, the fuel burnup distribution could alter the studied parameters.