ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mohammed Alqahtani, Adriaan Buijs, Meshari ALQahtani
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 614-622
Technical Paper | doi.org/10.1080/00295639.2021.2003651
Articles are hosted by Taylor and Francis Online.
Changes in the thermal power of a nuclear research reactor will lead to changes in experimental, irradiation, and testing conditions. Consequently, reactor core parameters are inevitably susceptible to changes. One such parameter is gamma heating (GH), which results from gamma interaction with materials. In this work, a gamma thermometer was used to measure GH over the course of 7 operational days and nights. In addition, the Monte Carlo reactor physics code Serpent-2 was used to evaluate the sensitivity of common detection methods for monitoring reactor core parameters such as neutron fluxes, GH, and gamma flux under the following conditions: reactor core power variation, reactor core fuel shuffling, and detector vicinity fuel assembly shuffling. The GH values obtained through measurements and calculations were linearly proportional to the reactor power. In addition, the Serpent-2 code for the McMaster nuclear reactor showed that despite maintaining the reactor power core at the same level, the fuel burnup distribution could alter the studied parameters.