ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Mohammed Alqahtani, Adriaan Buijs, Meshari ALQahtani
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 614-622
Technical Paper | doi.org/10.1080/00295639.2021.2003651
Articles are hosted by Taylor and Francis Online.
Changes in the thermal power of a nuclear research reactor will lead to changes in experimental, irradiation, and testing conditions. Consequently, reactor core parameters are inevitably susceptible to changes. One such parameter is gamma heating (GH), which results from gamma interaction with materials. In this work, a gamma thermometer was used to measure GH over the course of 7 operational days and nights. In addition, the Monte Carlo reactor physics code Serpent-2 was used to evaluate the sensitivity of common detection methods for monitoring reactor core parameters such as neutron fluxes, GH, and gamma flux under the following conditions: reactor core power variation, reactor core fuel shuffling, and detector vicinity fuel assembly shuffling. The GH values obtained through measurements and calculations were linearly proportional to the reactor power. In addition, the Serpent-2 code for the McMaster nuclear reactor showed that despite maintaining the reactor power core at the same level, the fuel burnup distribution could alter the studied parameters.