ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Thi-Mai-Dung Do, Supamard Sujatanond, Toru Ogawa
Nuclear Science and Engineering | Volume 196 | Number 5 | May 2022 | Pages 584-599
Technical Paper | doi.org/10.1080/00295639.2021.2009985
Articles are hosted by Taylor and Francis Online.
The chemical behavior of cesium molybdate (Cs2MoO4) in light water reactors during severe nuclear accidents remains unexplored. This study demonstrated the deposition behavior of Cs2MoO4 on Type 304 stainless steel (SUS304) at 1530 to 530 K under dry (Ar) and humid (Ar + H2O) conditions. Cesium molybdate was partially decomposed on the SUS304 surface, thereby inducing the oxidation of iron (Fe) and chromium (Cr) under the dry condition. Molybdenum (Mo) metal and molybdenum dioxide (MoO2) were detected on the surface, while Cs coexisted with chromium in the oxide layer at 1500 K. Both Cs2MoO4 and Mo metal were identified on the SUS304 surface at 1230 K. Under the humid condition, the oxidation of the SUS304 was affected by Cs2MoO4 vapor. Molybdenum was detected in the form of spots in the iron oxide layer, while cesium was not detected above 1500 K. Molybdenum metal was detected on the surface of SUS304 oxide at 1230 K. Cesium molybdate was deposited on the SUS304 at 730 to 530 K under both the dry and humid conditions. The results are discussed in relation with the thermodynamic model of the Cs-Fe-Cr-Mo-O system. Thus, the chemical behavior of Cs2MoO4 at the interior of the reactor cooling system is elucidated.