ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Imre Pázsit, Victor Dykin
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 235-249
Technical Paper | doi.org/10.1080/00295639.2021.1973178
Articles are hosted by Taylor and Francis Online.
In a previous paper by Pázsit and Pál [“Multiplicity Theory Beyond the Point Model,” Ann. Nucl. Energy, Vol. 154 (2021)], a general transport theory calculation of the factorial moments of the number of neutrons emitted spontaneously from a sample was elaborated. In contrast to the original derivations by Hage and Cifarelli [“On the Factorial Moments of the Neutron Multiplicity Distribution of Fission Cascades,” Nucl. Instrum. Meth. Phys. Res. A, Vol. 236 (1985)] and Böhnel [“The Effect of Multiplication on the Quantitative Determination of Spontaneously Fissioning Isotopes by Neutron Correlation Analysis,” Nucl. Sci. Eng., Vol. 90 (1985)], also referred to as the point model, in the transport model the spatial and angular dependence of the internal fission chain is taken into account with a one-speed transport theory treatment. Quantitative results were given for a spherical item, and the bias of the point model regarding the estimation of the fission rate as compared to the more exact space-dependent model was estimated as a function of the size of the sphere and the factor.
In the present paper the formalism and the quantitative work are extended to the treatment of items with cylindrical shapes, which are more relevant in many practical applications. Results are presented for both square cylinders () and for tall () and flat () cylinders. This way the differences between the cylinder and the sphere on one hand and those between the various cylinder shapes on the other hand can be estimated. The results show that the bias depends on the geometry of the cylinder quite moderately, but similarly to the case of the sphere, the bias of the point model is quite significant for larger item sizes and values, and it is nonconservative (underestimates the fissile mass) as well.