ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
E. Blain, Y. Danon, D. P. Barry, B. E. Epping, A. Youmans, M. J. Rapp, A. M. Daskalakis, R. C. Block
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 121-132
Technical Paper | doi.org/10.1080/00295639.2021.1961542
Articles are hosted by Taylor and Francis Online.
Neutron scattering from a copper sample was measured at Rensselaer Polytechnic Institute utilizing the quasi-differential method. The measurement spanned the energy range from 0.5 to 20 MeV using the high-energy scattering system and from 2 keV to 0.5 MeV using the new mid-energy scattering system. Copper was selected as a material of interest to measure due to large discrepancies between experiments and simulations of the Zeus benchmark. The Zeus benchmark consists of a copper reflected highly enriched uranium system, and the angular distribution of copper scattering was thought to potentially be the cause of the discrepancy. The copper measurements found differences in the scattering response particularly in the incident energy region from 1 to 2 MeV for the high-energy measurement and from 2 to 4 keV in the mid-energy system. These differences are particularly noticeable at angles near 90 deg in the high-energy system and back angles in the mid-energy system. Additionally, for ENDF/B-VIII.0 there is a large discrepancy at the forward angle in the energy range around 0.5 MeV. For these reasons, a new evaluation of copper scattering utilizing these results is recommended and perhaps could help to improve the agreement with the Zeus benchmarks.