ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Joseph A. Christensen, R. A. Borrelli
Nuclear Science and Engineering | Volume 196 | Number 1 | January 2022 | Pages 98-108
Technical Paper | doi.org/10.1080/00295639.2021.1940066
Articles are hosted by Taylor and Francis Online.
Algorithms used to generate Monte Carlo input decks and to analyze the output over a range of uranium mass, water volume, and particle size in a regular lattice are described. The algorithms produce input decks for both homogeneous and heterogeneous, regular-lattice systems of 20% enriched uranium metal and water and then analyze the results to determine the minimum critical mass over a range of input mass and particle size. The output is presented and analyzed for a 20% enriched uranium metal and water system, and comparisons to existing technical reports and safety guides are discussed. Two particular existing recommendations are tested and compared with new results: the boundary between a homogeneous system and a heterogeneous system, and the recommended margins of safety that can be applied to account for the effects of heterogeneity.