ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Hiroki Takezawa, Delgersaikhan Tuya, Toru Obara
Nuclear Science and Engineering | Volume 195 | Number 11 | November 2021 | Pages 1236-1246
Technical Note | doi.org/10.1080/00295639.2021.1920797
Articles are hosted by Taylor and Francis Online.
This study introduces new methodologies for integrating fission reactions induced by delayed neutrons into the Multi-Region Integral Kinetic (MIK) code by using a Monte Carlo neutron transport calculation. First, it was confirmed that it is feasible to solve the Integral Kinetic Model (IKM) with delayed neutrons by the forward Euler discretization method in terms of the number of time steps. This can be done with the help of the law of radioactive decay to reflect the delay in the emission of delayed neutrons in the discretized IKM. Second, a new Monte Carlo–based methodology was introduced for calculating the cumulative distribution functions of secondary fission induced by prompt and delayed neutrons. These functions are necessary for the discretized IKM. The results of preliminary verification using the Godiva reactor confirmed the applicability of the new Monte Carlo–based methodology. A new MIK code that has the capability of calculating the fission reaction rates for delayed neutrons is currently under development. Based on the preliminary verification results, future studies will verify the discretized IKM with delayed neutrons using kinetic analyses and compare them to experimental results for prompt and delayed supercritical transients in diverse reactor configurations.