ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
L. R. Cornejo, B. S. Collins, S. G. Stimpson, A. M. Graham
Nuclear Science and Engineering | Volume 195 | Number 8 | August 2021 | Pages 890-905
Technical Paper | doi.org/10.1080/00295639.2021.1877503
Articles are hosted by Taylor and Francis Online.
For full-core modeling in the Virtual Environment for Reactor Analysis (VERA), the three-dimensional multigroup eigenvalue neutron transport problem is solved by MPACT. To improve the efficiency of MPACT, advancements have been made in the transport accelerator. Multilevel-in-energy and multilevel-in-space coarse mesh finite difference (CMFD) solvers were developed to improve the efficiency of the CMFD accelerator. In this paper a new multilevel-in-space-and-energy CMFD solver is developed with coarsening in both space and energy on every level. Several different strategies are investigated for coarsening groups in energy. Modified V-cycle and multiple-cycle algorithms are evaluated for solving the multilevel equations. The performance of these solvers is compared for typical full-core reactor physics problems.