ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Ryoichi Kondo, Tomohiro Endo, Akio Yamamoto, Satoshi Takeda, Hiroki Koike, Kazuya Yamaji, Daisuke Sato
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 694-716
Technical Paper | doi.org/10.1080/00295639.2020.1863066
Articles are hosted by Taylor and Francis Online.
A Resonance calculation using energy Spectrum Expansion (RSE) method is newly proposed in this paper. In this method, ultra-fine-group (UFG) spectra appearing in a resonance calculation are expanded by orthogonal bases on energy, which are extracted from the UFG spectra obtained in homogeneous geometry with various background cross sections using singular value decomposition and low-rank approximation. Namely, this method is based on the concept of a reduced order model. A neutron transport equation for flux moments (expansion coefficients) similar to the conventional one is derived and is numerically solved. This method applies to two benchmark problems in which a resonance interference effect and spatial self-shielding effect can appear. The results indicate that this method accurately predicts the reference effective cross sections and reaction rates obtained from direct UFG calculation in heterogeneous geometry.