ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
R. C. Block, J. A. Burke, D. P. Barry, M. J. Rapp, S. Singh, Y. Danon
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 679-693
Technical Paper | doi.org/10.1080/00295639.2021.1877989
Articles are hosted by Taylor and Francis Online.
Neutron capture and transmission measurements were carried out from thermal to 2000 eV on both solid and liquid samples containing elemental cesium (133Cs). This work describes the extension of the R-matrix analysis of these data from 600 to 2000 eV by correcting the capture data for false capture in the NaI detector. These false capture–corrected capture and transmission data were analyzed for resonance parameters utilizing the SAMMY Bayesian analysis code to simultaneously fit both the capture and transmission data. Parameters were obtained for 53 cesium resonances over the 600- to 2000-eV energy range. The s-wave strength function was determined over the energy range from 0 to 1800 eV for both spin J = 3 and J = 4 resonances.